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LETTER TO THE EDITOR 

Effective analysis of damage spreading in Ising models 

Dietrich Stauffer 
k p m e n t  of Physics St F X University, Antigomsh, Nova Scotia, B20 ICO, Canada 

Received 12 May 1993 

Abstract Using large lattices and different methods of simulation and analysis, the kinetic 
critical exponent I For damage spreading is shown to be consistem1 with I = 2 in hvo to five 
dimensions, without the logarithmic problems Seen in some earlier work. 

The method of damage spreading, introduced for genetics by Kauffman [l], has for some 
time been used for king magnets [Z]. With proper definitions, it was shown to give the 
static [3] and the dynamic [4] spin correlation functions. Nevertheless, only by assuming 
logarithmic correction factors could the fractal dimension of the damage cloud be reconciled 
with the usual fractal dimension df = d -@/U of critical phenomena in d dimensions. And 
for the dynamics [6],  some of the simulations gave a kinetic critical exponent z somewhat 
higher than most of the recent quality studies by other methods [7,8]. 

To study damage spreading, we simulate two lattices using the same initial conditions 
and the same random numbers in a heat-bath procedure, flipping one spin at a time. Only in 
some localized regions are the two lattices initially different. This perturbation then may, or 
may not, spread through the lattice as the damage caused by this localized difference. The 
damage cloud is then the not necessarily connected set of sites differing in a spin-by-spin 
comparison of the two lattices at a given moment in time, and the damage is the number 
of sites in this damage cloud, i.e. the Hamming distance. We fix here one (hyper-) plane of 
one of the lattices as spin up and let all other hyperplanes fluctuate according to the Monte 
Carlo procedure. 

Recent simulations of time-dependent king properties [7,8] different from damage 
spreading showed that one does not have to wait for equilibrium before starting to measure 
characteristic times. Instead, one may start with all spins parallel, and can observe during 
the first hundred Monte Carlo sweeps through the lattice that the magnetization decays with 
time t as t -B/ ‘ ” ,  with the usual notation and the equilibrium values of critical exponents 
(the characteristic time varies as the zth power of the chkter is t ic  length). This trick is 
also employed in the present work. The program is based on the multi-spin coding for d ,  
dimensions on workstations, as published in 181. 

The fraction D(x, t )  of sites damaged in a plane at a distance x from the permanently 
damaged plane is expected to scale at the Curie point as 

D(r, t) = x - s ~ ” f ( x / t ’ ” )  (1) 

according to [4]. Figure 1 shows that our data are compatible with this standard scaling 
assumption, using p/v = 0.515, z = 2.05, J / k T ,  = 0.221 656 in lattices of size .lad. 
Plots for different z suggest a probable error of the order of 0.1 in z; similar results were 
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Pignre 1. (a) Semilogarithmic plot of scaled damage %@IUD versus scaled distance %It’/‘ for 
z = 2.05 in three dimensions. The ewes for different times up to 2560 sweeps, represented by 
different symbols, roughly overlap. (b) Same for two dimensions, z = 2.165. 

found in [41 for two dimensions. Recent work without damage spreading (see [71 for further 
literature) gave z between 2.03 and 2.10 and thus our z is fully consistent with these data. 

The scaled damage D ( x ,  t )x# /”  as a function of distance sinks below sane threshold 
value 0 at a distance x proportional to f’l’ according to the above scaling law. Figure 2 
shows the relation between this threshold distance and time for thresholds 0 = 0.02, 0.04, 
and 0.08. Again, the slopes of these log-log plots give an exponent I/z close to 0.5, without 
much curvature. Figures 1 and 2 also give two-dimensional results, using z = 2.165 171. 
Figure 3 shows analogous plots in four and five dimensions, where our data are roughly 
consistent with the exact result z = 2. (In 4 - E  dimensions, z remains at 2 to first order in 
E,  and thus x cx ,I? without logarithmic corrections in four dimensions [9].) 
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Figure 2. Log-log plot of threshold distances versus time, as evaluated from the data leading 
to figure I. For increasing distances. the scaled damage decays below 8 (squares), 4 (manses). 
and 2 (diamonds) pr cent of a lattice plane at these threshold distances. (0) refers lo three and 
(b) to two dimensions. the suaight lines to I = 2.05 and 2.165, respectively. 

Thus everything seems fine. Why then were logarithmic and other difficulties observed 
in [5,6]? One problem is the use a different criterion for the damage to have reached a 
certain plane. Whereas here we demand a certain finite threshold value 6' for the damage 
in one plane, in [5,6] the criterion was to check when the first single site was damaged 
at a given distance or at the lattice boundaries. This criterion may not only give larger 
fluctuations but also logarithmic correction factors, since for a hyperplane of a hypercubic 
lattice with Ld spins the criterion for the damage to touch is now 

Ld-'D(x, t )  = O(1) 

Our semilogarithmic figure 1 shows that at least roughly the damage profile D(x, I) decays 
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F b r e  3. Log-log plot of threshold versus distance for four (diamonds) and five (square) 
dimensions. The straight line "spends to z = 2. For longer times. canstant distances Were 
observed in somewhat smaller lattices. 

exponentially with distance x ,  and then equation (1) gives 

x K t'lr log(constant x L ~ - ' x + / " ) .  (2) 

(Similar log(N)  corrections are expected if one would measure the radioactive decay time 
by observing after what time all N initially radioactive atoms have decayed. Matz et 
al observed the time which an initial damage needs to decay completely [61, and indeed 
logarithmic correction factors explained their data) 

If we keep the lattice centre permanently damaged and wait until the damage hits the 
lattice boundaries for the first time, then x = L/2 ,  as simulated in [5]. Thus 

t''2 K L/ log(L) (3) 

in this method. If in an infinite lattice the total number M of damaged sites increases with 
time as tdflz, where dr = d - ,5/v is the usual fractal dimension, then at the time t given 
by (3) the total damage is 

M 0: ( L /  log(L))d' (4) 

without any multiscaling complications assumed in [5] to explain the numerically observed 
logarithmic factors. The effective fractal dimension dlog(M)/dlog(t) is df( l  - l/ln(L)) 
according to (4). roughly as found by de Arcangelis et al [5]. References [5, 61 were not 
the only papers employing the logarithmically dangerous method of relying on single sites 
for the damage touching [IO]. 

Our method of measuring damage spreading in the nonequilibrium part of the relaxation 
towards equilibrium is valid only for intermediate times and large lattices, 1 (< t << L'. If 
the damage reaches a distance of about L/2  at t - Lz,  then with our periodic boundary 
conditions the tips of the damage clouds start to interfere with each other. Finally, fort >> L' 
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the damage profile becomes independent of time and resembles that of the magnetization, 
as confirmed by simulations. This saturation of the damage means that the above threshold 
distances no longer increase as tilr but weaker, leading to an effective exponent z increasing 
towards infinity due to these finite size effects. 

Following 161, we also may first let the system equilibrate for t >> Lz, and only then 
let the damage spread analogous to 171 fort << L'. Now, for the same amount of computer 
time, the lattices have to be smaller. Indeed, for lattices 40 times smaller than those of 
figures 1 and 2 for the first few hundred sweeps through the lattice the effective exponent 
z is close to 2 also in this 'equilibrium' method, but then the damage seems to cross over 
towards saturation and lets the effective exponent z increase. Similar effects were observed 
by Hunter er al 161. For larger lattices and shorter times, according to figure 4 these 
difficulties are avoided and again z Y 2.05. 

(A difference compared with Hunter et al [6] is that they let the damage start from a 
single site, instead of our method of damaging a whole plane. In their method the times for 
the damage to reach a distance x fluctuate very strongly (see their figure 9). We found the 
histogram for these times to decay exponentially for long times; thus all moments of this 
distribution of touching times should give the same characteristic time apart from constant 
factors. These strong fluctuations thus are not responsible for the smng variation of the 
effective z observed there. Also, we confirmed their average touching time at x = 25 in 
three dimensions when we let the damage start at the centre site. Thus the difference in the 
programs, multi-spin coding versus simple storage of spins, should not be blamed for the 
difficulties.) 

In summary, we let the damage spread from the beginning of the simulation and damaged 
a whole (hyper-)plane. Therefore our lattices were larger and the fluctuations smaller. We 
found smooth log-log plots of distance versus time leading to reasonable values of z in 
three-, four- and five-dimensional king models. Some logarithmic corrections reported in 
the literature could be explained and avoided by a better analysis. Thus damage spreading 
is an intuitively appealing method to study correlations in king models. Whether it is more 
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Figure 4. Log-log plot of threshold distances versus time, 0 = 1, 2, 4, 8, 15, 25 and 50 per 
cent (from top to bottom) in Uuee dimensions, when damage starts spreading only after 32000 
sweeps to equilibrate the lanice, followed by 115 samples of 800 sweeps each. 
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accurate than other methods for determining z remains to be seen; OUT study employed much 
less Monte Carlo steps than the work of It0 [7] and Heuer [lo]. 

We thank the Canada Council for support, Naeem Jan and Doug Hunter for many discussions 
and warm hospitality, and Antonio Coniglio and Hans Hemann for correspondence. 
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